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ARCHITECTURED MATERIALS

Definition
A material will be said to be architectured if:
I It presents, between its microstructure and its macrostructure, one or more other scales of

organization of matter;
I If the intermediate organization scales are commensurable with those of the microstructure

and/or the macrostructure.

(a) Stacking spheres (b) Trabecular bone (c) Coextruded steel

Characteristics of architectured materials
I Multi-functional applications and multi-physical behaviours;
I Strong anisotropy;
I Weak separation between the different scales of the material.
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ARCHITECTURED MATERIALS

Definition
A material will be said to be architectured if:
I It presents, between its microstructure and its macrostructure, one or more other scales of

organization of matter;
I If the intermediate organization scales are commensurable with those of the microstructure

and/or the macrostructure.

(d) Stacking spheres (e) Trabecular bone (f) Coextruded steel

Characteristics of architectured materials
I Multi-functional applications and multi-physical behaviours;
I Strong anisotropy;
I Weak separation between the different scales of the material.
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CONSEQUENCE OF THE ARCHITECTURE

A (non-contractual) typology of non-standard effects:
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Examples of emergent behaviours
(Scale dependent behaviours)
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NON CENTROSYMMETRIC LATTICE
In static

Test: Uniaxial traction on architectured material (Auffray et al. 2015; Poncelet et al. 2018)
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Observation: Appearance of a strain-gradient, non-standard coupling.
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HEXAGONAL ANISOTROPY

Dynamic

Experiment: Propagation of elastic waves in a hexagonal lattice (Rosi et al. 2016)

Observation: At low frequency, the propagation is isotropic, when the frequency increases the
propagation becomes hexagonal.
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Examples of materials with mechanisms
(Scale independent behaviours)
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MATERIALS WITH MECHANISMS
Auxetic snub square lattice (Durand 2022)

Observation
Isotropic strain gradient behaviour
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CONTINUOUS DESCRIPTION OF STRUCTURAL EFFECTS

We want to replace the architecture ...
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...to reveal its consequence at a larger scale

The effect of the mesostructure is contained in the algebraic structure of the constitutive law.
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EFFECTIVE OVERALL BEHAVIOR

Some natural questions

1. What type of global continuum model should be considered?
I Ockham’s razor: the extension must be the "minimal" to capture emergent phenomena.

2. How many independent material parameters are needed to establish the model?
I Important for identification, homogeneization, identification,...

3. What is the mechanical content of these additional parameters?
I Important for topological optimisation, identification, model choosing,...

Assumptions

1. Small strain;

2. Linear local elasticity;

3. Theory and explicit results in 2D.
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COSSERAT VS. MINDLIN

In the literature, Cosserat’s Elasticity (Cosserat et al. 1909) and Mindlin’s SGE (Mindlin 1964)
models are often opposed, but what are the ins and outs of this debate ?

(a) F. Cosserat (b) R.D. Mindlin
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LOCAL GENERALIZED CONTINUA

Classical solid mechanics can be generalized (Forest 2006):
I Addition of degrees of freedom: the micromorphic way;
I Addition of gradients: the strain-gradient way;
I Combination of previous approaches.

Remark
Gradient type continua can be obtained by constraining Micromorphic-one.
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HIGHER-ORDER THEORY: THE MICROMORPHIC FAMILY

We consider the following set of degrees of freedom:

DDL = {u, χ
∼
} ; (u, χ

∼
) ∈ Rd ×⊗2Rd

The state variables associated with this kinematics are the following:

PSV = {u⊗∇, χ
∼
⊗∇}

Linear constitutive law: 
σ
∼

= C
≈

: ε
∼

+ B
≈

: e
∼

+ M
u
... κ
'

s
∼

= B
≈
T : ε
∼

+ D
≈

: e
∼

+ E
u
... κ
'

τ
'

= M
u
T : ε
∼

+ E
u
T : e
∼

+ A∼∼∼
... κ
'

with

I ε
∼

: the standard strain tensor;

I e
∼

= u⊗∇− χ
∼

: the relative strain tensor;

I κ
'

= χ
∼
⊗∇: the micro-strain gradient.

I σ
∼

: the Cauchy stress tensor;

I s
∼

: the relatives stress tensor;

I τ
'

: the hyperstress tensor.
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CHOICE OF KINEMATIC ENRICHMENT

Structure of the kinematic Enrichment (Eringen 0198; Forest et al. 2006):

χ
∼
∈ ⊗2R3 = χ

∼
D + χ

∼
A + χ

∼
S = χ

∼
D + ε

'
· φ+

1

3
α I
∼

Depending on the partial enrichments, intermediate models are obtained:

Modele χ
∼

DOF

Cauchy ∅ 3
Microdilatation α 4

Cosserat φ 6
Microstrech (φ, α) 7

Incompressible Microstrain χ
∼
D 8

Microstrain (χ
∼
D, α) 9

Incompressible Micromorphic (χ
∼
D, φ) 11

Micromorphic (χ
∼
D, φ, α) 12
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THE COSSERAT MODEL: MICROMORPHIC FORMULATION

We consider the following set of degrees of freedom:

DDL = {u, φ} ; (u, φ) ∈ R3 × R3

The state variables associated with this kinematics are the following:

PSV = {u⊗∇, φ⊗∇}

Linear constitutive law: 
σ
∼

= C
≈

: ε
∼

+ B
'

: e + M
≈

: κ
∼

s = B
'
T : ε
∼

+ D
∼

: e + E
'

: κ
∼

m
∼

= M
≈
T : ε
∼

+ E
'
T : e + A

≈
: κ
∼

with

I ε
∼

= (u⊗∇)S : the standard strain tensor;

I e = 1
2
ε
'
· ω− φ: the relative strain tensor;

I κ
∼

= φ⊗∇: the curvature tensor.

I σ
∼

= σ
∼
T : the Cauchy stress tensor;

I s: the relatives stress tensor;
I m
∼

: the couple-stress tensor.
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THE COSSERAT MODEL: MICROMORPHIC FORMULATION

We consider the following set of degrees of freedom (Eremeyev et al. 2012):

DDL = {u, φ} ; (u, φ) ∈ R3 × R3

The state variables associated with this kinematics are the following:

PSV = {u⊗∇, φ⊗∇}

Linear constitutive law: 
σ
∼

= C
≈

: ε
∼

+ B
'

: e + M
≈

:κ
∼

s = B
'
T : ε
∼

+ D
∼

: e + E
'

: κ
∼

m
∼

= M
≈
T : ε
∼

+ E
'
T : e + A

≈
: κ
∼

with

I ε
∼

= (u⊗∇)S : the standard strain tensor;

I e = 1
2
ε
'
· ω
∼
− φ: the relative strain tensor;

I κ
∼

= φ⊗∇: the curvature tensor.

I σ
∼

= σ
∼
T : the Cauchy stress tensor;

I s: the relatives stress tensor;
I m
∼

: the couple-stress tensor.
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THE COSSERAT MODEL: CLASSICAL FORMULATION

We consider the following set of degrees of freedom:

DDL = {u, φ} ; (u, φ) ∈ R3 × R3

The state variables associated with this kinematics are the following:

PSV = {u⊗∇, φ⊗∇}

Linear constitutive law:  s
∼

= C
≈

: e
∼

+ K
≈

: κ
∼

m
∼

= K
≈
T : e
∼

+ H
≈

: κ
∼

with

I e
∼

= u⊗∇− ε
'

: φ: the linear stretch
tensor;

I κ
∼

= φ⊗∇: the curvature tensor.

I s
∼

: the asymmetric stress tensor;

I m
∼

: the couple-stress tensor.
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LOCAL GENERALIZED CONTINUA

Enforcing the kinematic constraint (Bernoulli hypothesis)

e
∼

= u⊗∇− χ
∼

= 0

leads to
χ
∼

= u⊗∇, ⇒ χ
∼
⊗∇ = u⊗∇⊗∇

meaning that micromorphic continua degenerate into strain gradient continua.
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STRAIN-GRADIENT ELASTICITY

Degrees of freedom: DDL = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law: 
σ
∼

= C
≈

: ε
∼

+ M
u
... η
'

τ
'

= M
u
T : ε
∼

+ A∼∼∼
... η
'

with

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor.

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.
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KOITER ELASTICITY ( A.K.A CONSTRAINED COUPLE STRESS ELASTICITY TOUPIN 1962)

Degrees of freedom: DDL = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ω ⊗∇}

Linear constitutive law: σ∼ = C
≈
.. ε
∼

+ M
≈
.. κ
∼

m
∼

= M
≈
T .. ε
∼

+ A
≈
.. κ
∼

with

I ε
∼

: strain tensor;

I κ
∼

= ω ⊗∇: curvature tensor.

I σ
∼

: Cauchy stress tensor;

I m
∼

: couple-stress tensor.
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QUESTION: HOW TO CHOOSE BETWEEN STRAIN-GRADIENT AND
COSSERAT MODEL

In the literature, the Cosserat and SGE models are often opposed, but
I Cosserat involves new DOFs, while SGE involves higher-gradient;
I The kinematics described by Cosserat is limited when compared to full SGE;
I The order of constitutive tensors are higher in SGE than in Cosserat;
I The dynamics feature are different (cf. tomorrow talk).

⇒Let us examine the ability of each model to describe higher order anisotropic effects.
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ELASTODYNAMICS ASPECT
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Wavenumber in the reciprocal lattice along the 
boundary of the half Irreducible Brillouin zone

I Classical elasticity ;
I Very longwavelength and low

frequency approximation;
I Strain-Gradient elasticity;

I Dispersion ;
I Micromorphic elasticity ;

I Optic branches;

Strain gradient theories can not model optical branches.
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HERMANN THEOREM AUFFRAY 2008; GLÜGE ET AL. 2021

Theorem
ConsiderM be a microstructure left invariant by a rotation of order n and T a tensor
describing its effective properties. Let m be the order of the leading harmonic tensor in T, if
n > m then T is at least SO(2)-invariant (hemitropic).

Remark
I To describe an anisotropy of order 6, a constitutive tensor must be, at least, of 6th-order;
I To have a constitutive tensor of order 6, it is necessary to have a generalised deformation

tensor of order 3.
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CHOICE OF KINEMATIC ENRICHMENT (2D CASE)

Constitutive tensor depend on the gradient of χ
∼

χ
∼
⇒ κ
'

= χ
∼
⊗∇

To "see" an anisotropy of order 6, κ
'

should at least be of order 3.

Modele χ
∼

χ
∼
⊗∇

Cauchy ∅ ∅
Microdilatation K0 K1

Cosserat K−1 K1

Microstrech K0 ⊕ K−1 2K1

Incompressible Microstrain K2 K1 ⊕ K3

Microstrain K0 ⊕ K2 2K1 ⊕ K3

Incompressible Micromorphic K−1 ⊕ K2 2K1 ⊕ K3

Micromorphic K0 ⊕ K−1 ⊕ K2 3K1 ⊕ K3
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LOCAL GENERALIZED CONTINUA

Blabla
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HARMONIC ANALYSIS OF CONSTITUTIVE TENSOR SPACES

Aim of the section
Introduce the basics of harmonic decomposition to analyse and compare linear constitutive
models.

Outline
1. Geometrical elements;

2. Symmetry classes in R3;

3. Symmetry classes in R2;

4. Harmonic decomposition in R2.

The 2D setting
1. complex enough to produce non trivial results;

2. simple enough to handle explicit computations;

3. construct situations that can be extended to problems in R3.
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THE COSSERAT MODEL: CLASSICAL FORMULATION IN R2

We consider the following set of degrees of freedom:

DDL = {u, φ} ; (u, φ) ∈ R3 × R

The state variables associated with this kinematics are the following:

PSV = {u⊗∇,∇φ}

Linear constitutive law:  s
∼

= C
≈

: e
∼

+ K
'
· κ

m = K
'
T : e
∼

+ H
∼
· κ

with

I e
∼

= u⊗∇− φε
∼

: the linear stretch
tensor;

I κ = ∇φ: the curvature tensor.

I s
∼

: the asymetric stress tensor;

I m: the couple-stress tensor.

Constitutive tensor space Harmonic structure

C
≈
∈ Cos K4 ⊕ 2K2 ⊕ 3K0 ⊕ K−1

K
'
∈ Cou K3 ⊕ 3K1

H
∼
∈ Rot K2 ⊕ K0
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SYMMETRY CLASSES (AUFFRAY ET AL. 2023)
Theorem

The spaces Cos, Cou and Rot are respectively partitioned into 6, 4 and 2 symmetry classes:

I (Cos) = {[Z2] , [D2] , [Z4] , [D4] , [SO(2)] , [O(2)]}.
I (Cou) = {[1] , [Zπ2 ] , [D3] , [O(2)]}.
I (Rot) = {[D2] , [O(2)]}

By combining these results we obtain the set of symmetry classes of the complete elasticity of
Cosserat:

Theorem
The space Cos is partitioned into 10 symmetry classes:

I (Cos) = {[1] , [Zπ2 ] , [Z2] , [D2] , [Z3] , [D3] , [Z4] , [D4] , [SO(2)] , [O(2)]}.

Synthesis
The model is
I Sensitive to chirality and the lack of centrosymmetry;
I Cannot see anisotropy higher that 4-fold.
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SYMMETRY CLASSES (AUFFRAY ET AL. 2023)
Theorem
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The global form of the constitutive law can be detailed for each symmetry class, the constitutive
law has the following synthetic form:

L1 =

(
AZ2

K1

KT
1 HD2

)
; LZπ2

=

(
AD2

KZπ2

KT
Zπ2

HD2

)
(1)

LZ2
=

(
AZ2 0
0 HD2

)
; LD2

=

(
AD2 0
0 HD2

)
(2)

LZ3
=

(
ASO(2) KD3

KT
D3

HO(2)

)
; LD3

=

(
AO(2) KD3

KT
D3

HO(2)

)
(3)

LZ4
=

(
AZ4 0
0 HO(2)

)
; LD4

=

(
AD4 0
0 HO(2)

)
(4)

LSO(2) =

(
ASO(2) 0

0 HO(2)

)
; LO(2) =

(
AO(2) 0

0 HO(2)

)
(5)
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STRAIN-GRADIENT ELASTICITY

Degrees of freedom: DDL = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law: 
σ
∼

= C
≈

: ε
∼

+ M
u
... η
'

τ
'

= M
u
T : ε
∼

+ A∼∼∼
... η
'

with

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;.

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

Constitutive tensor space Harmonic structure

C
≈
∈ Ela K4 ⊕ K2 ⊕ 2K0

M
u
∈ Ela5 K5 ⊕ 3K3 ⊕ 5K1

A∼∼∼
∈ Ela6 K6 ⊕ 2K4 ⊕ 5K2 ⊕ 4K0 ⊕ K−1
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SYMMETRY CLASSES (AUFFRAY ET AL. 2015)
Theorem
The spaces Ela, Ela5 and Ela6 are respectively partitioned into 4, 6 and 8 symmetry classes:

I (Ela) = {[Z2] , [D2] , [D4] , [O(2)]}.
I (Ela5) = {[1] , [Zπ2 ] , [Z3] , [D3] , [D5] , [O(2)]}.
I (Ela6) = {[Z2] , [D2] , [Z4] , [D4] , [Z6] , [D6] , [SO(2)] , [O(2)]}

By combining these results we obtain the set of symmetry classes of the complete SGE in R2

Theorem
The space Sge is partitioned into 14 symmetry classes:

I (Sge) = {[1] ,
[
Z
π
2

]
, [Z2] , [D2] , [Z3] , [D3] , [Z4] , [D4] , [Z5] , [D5] , [Z6] , [D6] [SO(2)] , [O(2)]}.

Synthesis
The model is
I Sensitive to chirality and the lack of centrosymmetry;
I Can see anisotropy higher that 4-fold.
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SYMMETRY CLASSES (AUFFRAY ET AL. 2015)
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Synthesis
The model is
I Sensitive to chirality and the lack of centrosymmetry;
I Can see anisotropy higher that 4-fold.
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EXPLICIT HARMONIC DECOMPOSITION (AUFFRAY ET AL. 2021)

Harmonic structure is easy to determine, but obtaining an explicit decomposition formula is
more difficult:
I the explicit decomposition is, in general, not unique;
I some explicit harmonic decompositions may lack physical interpretation;
I the complexity of the computations increases quickly with the tensor order.

Some methods can be found in the literature
I Spencer’s Algorithm (Spencer 1970);
I Verchery’s Method (Vannucci 2007; Verchery 1982);
I Zou’s Approach (Zheng et al. 2000; Zou et al. 2001).

...but none of them is really satisfactory.
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CRUCIAL OBSERVATION

Constitutive tensors do not come from the sky...

Figure: Case of a tenth-order tensor fallen from the sky

Main idea A constitutive tensor T is an element of L(E,F). Let determine a decomposition of
T compatible with those of E,F.
Main interests:
I Provide a physical content and partition of mechanical energy;
I Uniquely defined as soon as decompositions for E,F has been chosen;
I Link with Kelvin decomposition, positive definiteness conditions are simpler.
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THE CLEBSCH-GORDAN ALGORITHM (AUFFRAY ET AL. 2021)

Definition Let (E,F) be state tensor spaces. A constitutive tensor T is an element of L(E,F).
The Clebsch-Gordan harmonic decomposition of T is the only harmonic decomposition of T
compatible with those of E,F.

Procedure:
1) State Tensor Harmonic Decomposition (STHD) Choose and compute an harmonic

decomposition for elements v ∈ E and w ∈ F.

2) Intermediate Block Decomposition (IBD) The choice of a STHD induces a decomposition
of L(E,F) into "blocks". This decomposition is not irreducible;

3) Clebsch-Gordan Harmonic Decomposition (CGHD) Each elementary block belongs to a
space Kp ⊗ Kq , the harmonic structure of which is known by the
Clebsch-Gordan formula, and is uniquely defined.

Interest:
I Provide a physical content and a partition of the mechanical energy;
I Uniquely defined as soon as the decompositions for E,F has been chosen;
I Natural link with the positive definiteness conditions.
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RETURNING TO STRAIN-GRADIENT ELASTICITY

Degrees of freedom: DOF = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law (centro symmetric case):

σ∼ = C
≈

: ε
∼

τ
'

= A∼∼∼
... η
'

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

New elasticity tensor:
I A∼∼∼

allows hexatropic wave propagation (order ε2).
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RETURNING TO STRAIN-GRADIENT ELASTICITY

Degrees of freedom: DOF = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law (centro symmetric case)

σ∼ = C
≈

: ε
∼

τ
'

= A∼∼∼
... η
'

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

New elasticity tensor:
I A∼∼∼

allows hexatropic wave propagation (order ε2).

Let’s proceed to the decomposition of A∼∼∼
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RETURNING TO STRAIN-GRADIENT ELASTICITY

Degrees of freedom: DOF = {u} ; u ∈ Rd
State variables associated with the kinematics

PSV = {ε
∼
, ε
∼
⊗∇}

Linear constitutive law (centro symmetric case):

σ∼ = C
≈

: ε
∼

τ
'

= A∼∼∼
... η
'

I ε
∼

: strain tensor;

I η
'

= ε
∼
⊗∇: strain gradient tensor;

I σ
∼

: Cauchy stress tensor;

I τ
'

: hyperstress tensor.

New elasticity tensor:
I A∼∼∼

allows hexatropic wave propagation (order ε2).

The first step requires the decomposition of T(ij)k
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STEP 1: HARMONIC DECOMPOSITION OF T(ij)k

• The harmonic structure of T(ij)k is:

T(ij)k ' K3 ⊕ 2K1

• Following Mindlin (Mindlin 1964), we consider the harmonic decomposition described in the
following diagram:

η
'
∈ T(ij)k

Sym

ww

Id−Sym

((
Stretch-gradient:S

'
∈ S3

H

��

V
'
r ∈ Hr(3,1) : Rotation gradient

H

��
(H
'
, vs) ∈ (K3 × K1

s) vr ∈ K1
r

• An associated set of orthogonal projectors (P∼∼∼
3, P∼∼∼

1s, P∼∼∼
1r) is defined.
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STEP 2 & 3: BLOCK DECOMPOSITION OF Ela6
From the harmonic decomposition of T(ij)k , the relation:

τ
'

= A∼∼∼
... η
'

can be expanded and block-decomposed:

(
τ
'
S

τ
'
R

)
=

A∼∼∼
SS A∼∼∼

RS

A∼∼∼
SR A∼∼∼

RR

η'S
η
'
R

⇒

τ
'
S,3

τ
'
S,1

τ
'
R,1

 =


A∼∼∼
SS,33 A∼∼∼

SS,31 A∼∼∼
SR,31

A∼∼∼
SS,13 A∼∼∼

SS,11 A∼∼∼
SR,11

A∼∼∼
RS,13 A∼∼∼

RS,11 A∼∼∼
RR,11



η
'
S,3

η
'
S,1

η
'
R,1



with
A∼∼∼
SS,33 A∼∼∼

SS,31 A∼∼∼
SR,31

A∼∼∼
SS,11 A∼∼∼

SR,11

A∼∼∼
RR,11

 ∈
K6 ⊕ K0 K4 ⊕ K2 K4 ⊕ K2

K2 ⊕ K0 K2 ⊕ K0 ⊕ K−1

K2 ⊕ K0



I Stretch-gradient stiffnesses;
I Rotation-gradient stiffnesses;
I Coupling stiffnesses.
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THE EXPLICIT CLEBSCH-GORDAN HARMONIC DECOMPOSITION

Proposition
The tensor A∼∼∼

∈ Ela6 admits the uniquely defined Clebsch-Gordan Harmonic decomposition

associated to the family of projectors (P∼∼∼
3, P∼∼∼

1s, P∼∼∼
1r)

A∼∼∼
= H∼∼∼

(6)
+

4

3
(H
≈

(4,s) · φ
≈
s(3,1)

+ φ
≈
s(3,1) · H

≈
(4,s)

) +
3

2
(H
≈

(4,r) · φ
≈
r(1,3)

+ φ
≈
r(3,1) · H

≈
(4,r)

)

+
16

9
φ
≈
s(3,1) · h∼

1s,1s · φ
≈
s(3,1)

+
9

4
φ
≈
r(3,1) · h∼

1r,1r · φ
≈
r(1,3)

+
4

3
(φ
∼∼∼

(4,2)
: h∼

3,1s · φ
≈
s(3,1)

+ φ
≈
s(3,1) · h∼

3,1s
: φ
∼∼∼

2,4
)

+
3

2
(φ
∼∼∼

(4,2)
: h∼

3,1r · φ
≈
r(1,3)

+ φ
≈
r(3,1) · h∼

3,1r
: φ
∼∼∼

2,4
)

+2

(
φ
≈
s(3,1) · h∼

1s,1r · φ
≈
r(1,3)

+ φ
≈
r(3,1) · h∼

1s,1r · φ
≈
s(3,1)

)

+
α3,3

2
P∼∼∼
3

+
2

3
α∼
1s,1s

P∼∼∼
1s

+
3

4
α
1r,1r

P∼∼∼
1r

+ α
1s,1r

(
φ
≈
s(3,1) · φ

≈
r(1,3)

+ φ
≈
r(3,1) · φ

≈
s(3,1)

)

+β
1s,1r

(
φ
≈
s(3,1) · ε∼ · φ≈

r(1,3) − φ
≈
r(3,1) · ε∼ · φ≈

s(3,1)
)

in which
H∼∼∼

(6),H
≈

(4,s),H
≈

(4,r), h
∼
3,1s, h

∼
3,1r, h

∼
1s,1r, h

∼
1s,1s, h

∼
1r,1r, α3,3, α1s,1s, α1r,1r, α1r,1s, β1r,1s

are elements of K6 × (K4)2 × (K2)5 × (R)5. 50 / 66
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BOUQUET OF HARMONIC VECTORS: GENERIC CASE

hss

hts

htr

hsr
hrr

H4ts

H4tr

H6

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure: Harmonic bouquet of A∼∼∼

Squared norms (degree 2)

Invariant Expression

I2 H∼∼∼
(6) ::: H∼∼∼

(6)

J2 H
≈

(4,s) :: H
≈

(4,s)

K2 H
≈

(4,r) :: H
≈

(4,r)

L2 h
∼

3,1s : h
∼

3,1s

M2 h
∼

1s,1s : h
∼

1s,1s

N2 h
∼

1r,1r : h
∼

1r,1r

O2 h
∼

3,1r : h
∼

3,1r

P2 h
∼

1s,1r : h
∼

1s,1r

Hemitropic Moduli (degree 1)

α3,3 α1s,1s α1r,1r α1s,1r β1s,1r

Vanishing of the squared norms
The vanishing of the harmonic norms are sufficient to parametrize numerous situations
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EXAMPLE 1: AUXETIC SQUARE (DURAND 2022)


τ
'
d,3

τ
'
d,1

τ
'
h,1

 =

K0 K4 K4

K0 K0

K0



η
'
d,3

η
'
d,1

η
'
h,1



Proposition

The tensor A∼∼∼
D4 ∈ Ela6 admits the Clebsch-Gordan Harmonic decomposition

A∼∼∼
=

(
H
≈

3,1d
. φ
≈
d{1,3}

+ φ
≈
d{3,1}

. H
≈

3,1d
)

+ 2

(
H
≈

3,1h
. φ
≈
h{1,3}

+ φ
≈
h{3,1}

. H
≈

3,1h
)

+
α3,3

2
P∼∼∼
(3,3)

+
1

2
α
1d,1d

P∼∼∼
(3,1d)

+ α
1h,1h

P∼∼∼
(3,1h)

+ α
1d,1h

(
φ
≈
d{3,1}

. φ
≈
h{1,3}

+ φ
≈
h{3,1}

. φ
≈
d{1,3}

)

Remark
The spheric strain is a soft mode, only its gradient play a role for the mechanical energy
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EXAMPLE 1: AUXETIC SQUARE (DURAND 2022)


τ
'
d,3

τ
'
d,1

τ
'
h,1

 =

K0 K4 K4

K0 K0

K0



η
'
d,3

η
'
d,1

η
'
h,1



Proposition
For the considered soft-mode mechanism, the projected tensor A∼∼∼

? reduces to

A∼∼∼
?

= α
1h,1h

P∼∼∼
(3,1h)

Conclusion
Auxetic square possesses an isotropic strain gradient behaviour

54 / 66



Introduction Generalized continua Symmetry classes of Cosserat and Strain-gradient elasticity Explicit Harmonic Decomposition of SGE Applications References

EXAMPLE 2: SECOND ORDER INVERSE CELL PROBLEM (Cal21)

• Inverse cell problem: Topology optimisation of a periodic unit cell with cost function
defined on the effective elasticity tensor

Cost function:

J(Ωm) = f(C
≈
h) + λ|Ωm|

• The classical algorithm is based on the topological derivative of C
≈
h (Amstutz et al. 2010);

Recent extensions
I Topological derivative of homogenised tensors of order 5 and 6 (Calisti et al. 2021);
I Extension of the S. Amstutz method to strain-gradient;
I Functionals expressed from tensor invariants.

55 / 66



Introduction Generalized continua Symmetry classes of Cosserat and Strain-gradient elasticity Explicit Harmonic Decomposition of SGE Applications References

EXAMPLE 2: SECOND ORDER INVERSE CELL PROBLEM (Cal21)

• Inverse cell problem: Topology optimisation of a periodic unit cell with cost function
defined on the effective elasticity tensor

Cost function:

J(Ωm) = f(C
≈
h) + λ|Ωm|

• The classical algorithm is based on the topological derivative of C
≈
h (Amstutz et al. 2010);

Recent extensions
I Topological derivative of homogenised tensors of order 5 and 6 (Calisti et al. 2021);
I Extension of the S. Amstutz method to strain-gradient;
I Functionals expressed from tensor invariants.

55 / 66



Introduction Generalized continua Symmetry classes of Cosserat and Strain-gradient elasticity Explicit Harmonic Decomposition of SGE Applications References

EXAMPLE 2: SECOND ORDER INVERSE CELL PROBLEM (Cal21)
Goal : Design of a tetrachiral periodic material.
Harmonic structure of A∼∼∼

: K0 K4 K4

K0 K0 ⊕ K−1

K0


Minimisation of β1r,1s ∈ K−1, in components:

β1r,1s ∈ K−1 =
1

2
(A111112 −A111121 +A122112 +A122222 −A221121 −A221222) ;

Resulting designs
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BOUQUET OF HARMONIC VECTORS: D6-INVARIANCE (HEXATROPE)

hsshts
htr hsr
hrr

H4tsH4tr
H6

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure: Harmonic bouquet of A∼∼∼

Squared norms (degree 2)

Invariant Expression

I2 H∼∼∼
(6) ::: H∼∼∼

(6)

J2 H
≈

(4,s) :: H
≈

(4,s)

K2 H
≈

(4,r) :: H
≈

(4,r)

L2 h
∼

3,1s : h
∼

3,1s

M2 h
∼

1s,1s : h
∼

1s,1s

N2 h
∼

1r,1r : h
∼

1r,1r

O2 h
∼

3,1r : h
∼

3,1r

P2 h
∼

1s,1r : h
∼

1s,1r

Hemitropic Moduli (degree 1)

α3,3 α1s,1s α1r,1r α1s,1r β1s,1r

Vanishing of the squared norms

T∼∼∼
∈ Σ[D6] iff J2 +K2 + L2 +M2 +N2 +O2 + P2 + (β1s,1r)2 = 0
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EXAMPLE 3: HEXATROPIC WAVE PROPAGATION (D6)


τ
'
S,3

τ
'
S,1

τ
'
R,1

 =

K6 ⊕ K0 0 0
K0 K0

K0



η
'
S,3

η
'
S,1

η
'
R,1


I Stretch-gradient;

I Rotation-gradient;

I Coupling.

Proposition

The tensor A∼∼∼
D6 ∈ Ela6 admits Clebsch-Gordan Harmonic decomposition

A∼∼∼
D6 = H∼∼∼

(6)
+
α3,3

2
P∼∼∼
3
+

2

3
α
1s,1s

P∼∼∼
1s

+
3

4
α
1r,1r

P∼∼∼
1r

+α
1s,1r

(
φ
≈
s(3,1) · φ

≈
r(1,3)

+ φ
≈
r(3,1) · φ

≈
s(1,3)

)

in which H∼∼∼
(6), α3,3, α1s,1s, α1r,1r, α1r,1s are elements of K6 × (R)4.

Remark
The anisotropy in the D6 case only concerns the stretch gradient stiffness.
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EXAMPLE 3: HEXATROPIC WAVE PROPAGATION (D6) (ROSI ET AL. 2016)
With explicit microstructure:

Once homogenized:

(c) Low frequency (d) High frequency
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PSEUDO CLOAKING EFFECT IN ARCHITECTURED MATERIALS ROSI ET AL.
2019

Propagation within a strain-gradient continuum
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PSEUDO CLOAKING EFFECT IN ARCHITECTURED MATERIALS (ROSI ET AL.
2019)

In condensed form

A∼∼∼
D6 (Θ) = A∼∼∼

O(2) + aDA∼∼∼
(Θ)︸ ︷︷ ︸

H∼∼∼
(6)

Schematic representation of the angles
involved:

Distribution of the material orientation angle Θopt(x1) within a sample

Figure: .
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PSEUDO CLOAKING EFFECT IN ARCHITECTURED MATERIALS ROSI ET AL.
2019

Propagation within a strain-gradient continuum

On-going work:

De-Homogenization of the effective structure:

I conformal transformation;
I . . .
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PSEUDO CLOAKING EFFECT IN ARCHITECTURED MATERIALS ROSI ET AL.
2019

Propagation within a strain-gradient continuum

On-going work:

De-Homogenization of the effective structure:

I conformal transformation;
I . . .
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EXAMPLE 4: INVERSE PROBLEM
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